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Abstract

The results of statistical analysis of simulation data obtained from long time integrations of
geophysical fluid models greatly depend on the conservation properties of the numerical dis-
cretization chosen. This is illustrated for quasi-geostrophic flow with topographic forcing, for
which a well established statistical mechanics exists. Statistical mechanical theories are con-
structed for the discrete dynamical systems arising from three discretizations due to Arakawa
(1966) which conserve energy, enstrophy or both. Numerical experiments with conservative and
projected time integrators show that the statistical theories accurately explain the differences
observed in statistics derived from the discretizations.
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1. Introduction

In applications such as weather and climate predictions, long numerical simulations are
run for dynamical systems that are known to be chaotic, and for which it is consequently
impossible to simulate a particular solution with any accuracy in the usual sense of
numerical analysis. Instead, the goal of such simulations is to obtain a data set suitable
for computing statistical averages or otherwise to sample the probability distribution
associated with the continuous problem.

Different numerical discretizations have very different discrete dynamics, however. Re-
cent work on geometric integration [23,24,6,9] relies on backward error analysis, in which
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the numerical solution generated by a given method is viewed as the exact solution of
a perturbed problem. The properties of different discrete dynamics become more pro-
nounced when the numerical map is iterated over a very large number of time steps.
Therefore it is important to establish the influence that a particular choice of method
has on the statistical results obtained from simulations. Ideally, one would like to de-
termine criteria which a method should satisfy to yield meaningful statistics, and to
understand statistical accuracy in terms of discretization parameters.

To that end, in this paper we consider three related discretizations for an ideal fluid in
vorticity-stream function form, originally proposed by Arakawa [2]. The three discretiza-
tions conserve discrete approximations of energy, enstrophy, or both. We analyze the three
methods through appropriate (trivial) modifications of the statistical mechanics theory
of quasi-geostrophic flow over topography—based on the original work of Kraichnan [8]
and Salmon et al. [21] and recently expounded in Majda & Wang [11]. The resulting
theories predict entirely different statistical behavior for the three methods. Numerical
experiments with conservative and projected time integrators agree with the statistical
predictions, confirming that the conservation properties of a discretization define the
backdrop, or climatic mean, against which the dynamics takes place.

It should be mentioned at the outset that the statistical theory is a model and is known
to be incomplete. In [1], Abramov & Majda show that nonzero values of the third moment
of potential vorticity can cause significant deviation from the statistical predictions. On
the other hand, the third moment cannot be incorporated into the equilibrium statistical
mechanics distribution, because it is non-normalizable. In Section 6 we use the numerical
setup of [1] to facilitate comparison with their results. We wish to stress, however, that
the focus of this article is not the statistical mechanics of ideal fluids per se, but rather the
application of statistical mechanics as a tool for the numerical analysis of discretizations.

In Section 2 we briefly recall the quasi-geostrophic potential vorticity equation and its
conservation properties. Section 3 we review Arakawa’s discretizations, their conservation
properties, and prove that all of these define divergence-free vector fields. In Section 4,
the equilibrium statistical mechanical theories are developed for the three discretizations.
Most of this section is simply a summary of material in Chapters 7 and 8 of [11] for the
energy-enstrophy theory. Once established, it is a simple matter to extend the results to
the cases in which only one of these quantities is conserved, and we do this in Section
4.4. Time integration aspects are discussed in Section 5. The numerical experiments
confirming the statistical predictions are presented in Section 6.

2. The quasi-geostrophic model

This paper addresses the statistical mechanics of conservative discretizations of the
quasi-geostrophic potential vorticity model (QG) on a doubly periodic domain, @ =
{x = (z,y)|z,y € [0,27)}. The QG equation [17,18] is

@ =J(q,v), (1a)
Ay =q—h, (1b)

where the potential vorticity (PV) g(a,t), the stream function ¥ («,t), and the orography
h(x) are scalar fields, periodic in « and y with period 27. The Laplace operator is denoted
by A, and the operator J is defined by



j(Qv ¢) = way - Qywx- (2)
The QG equation is a Hamiltonian PDE [14] having Poisson bracket

(F.G} = /qﬂ” o9

E’E)dm (3)

and Hamiltonian functional
1
el =3 [va-hde (®)

The Poisson bracket is degenerate with Casimir invariants the generalized enstrophies
Clq] = [ f(q) dx for arbitrary function f. In particular, the polynomial enstrophies

Cp[q]=/qum, p=1,2,...

are conserved, of which the most important—the second moment of vorticity Co—will be
denoted by Z

2l =3 [ ide, o)

and will henceforth be referred to as the enstrophy.
3. Spatial semi-discretization

We first consider the discretization of (1) in space only. The resulting system of ordinary
differential equations will be referred to as the semi-discretization, and we will primarily
be concerned with its analysis and statistical mechanics.

When discretizing Hamiltonian PDEs, it is advisable to consider the discretizations
of the Poisson bracket and the Hamiltonian separately. As noted in [12], if a discrete
Poisson bracket can be constructed to maintain skew-symmetry and satisfy the Jacobi
identity, then any quadrature for the Hamiltonian will yield a semi-discretization that is
a Hamiltonian ODE, and consequently will conserve energy and (possibly some subclass
of) Casimirs. From the point of view of statistical mechanics, it is also natural to consider
the discretizations of the bracket and the Hamiltonian separately. The bracket ensures
the conservation of energy and enstrophy and preservation of volume, which are necessary
ingredients for the existence of a statistical theory at all. But only the conserved quantities
themselves enter into the probability distribution. Thus the predictions of the theory
depend only on the discretization of these conserved quantities. The discretization of the
Hamiltonian (4) amounts to a choice for the discrete Laplacian in (1b) and will be treated
in Section 3.1. The bracket will be discretized with Arakawa’s schemes in Section 3.2.

For Eulerian fluid models, the only known discretization with Poisson structure is the
sine-bracket truncation of Zeitlin [25], which is limited to 2D, incompressible flows on
periodic geometry. This truncation conserves M polynomial enstrophies on an M x M
grid. Tts statistics are investigated in [1]. For more general fluid problems, no Poisson dis-
cretizations are available. In lieu of a semi-discretization with Poisson structure, one may
attempt to construct discretizations which conserve desired first integrals and are volume
preserving. The flow of energy is important for statistics, and the spatial discretization
determines the local flow. In numerical weather prediction, energy conserving discretiza-
tions were advocated by Lorenz in 1960 [10]. Motivated by Lorenz’s work, Arakawa [2]

3



constructed discretizations that conserved energy, enstrophy or both. As we will see,
these discretizations are also all volume preserving.

We discretize (1) on a uniform M x M grid. Let az = Ay = 27/M and consider a
grid function g(t) € RM*M  with components ¢; ;(t) = q(iaz, jay,t), 4,5 =0,...,M —1,
where periodicity is realized by identifying the indices M and 0. We think of g as a vector
in an M?-dimensional phase space; that is, we identify RM * and RM*M , and use vector
notation, e.g., W1 g for the vector inner product of two such vectors.

3.1. Spectral solution of the stream function

The linear elliptic PDE (1b) is solved using the Fourier spectral method. Let the
Fourier transform of g € RM*M be defined by

M-1

p A 1 —i(tk+j¢

4=Fq <+ Qk,EZME Oqi,je Ghtil) 0= —M/2+1,...,M/2.  (6)
INES

The inverse transform is F~! = F*, and, for later reference, Parseval’s identity reads
2 ~
Doaty = e
i,j k.

Equation (1b) is solved exactly in Fourier-space. Denote the discrete Laplace operator
by A]\{I

Aup=q—h <= —(E+ Vo= Gos — hoy, kl=—-M/2+1,...M/2. (7

2

This relation is solved for stream function field 4 with mean zero. The inverse Laplacian
restricted to the hyperplane 1o = 0 is denoted by A e

0, k=0=0,

Yv=Ay(g—h) = Y= .
" ~(Gre — hie)/(k* + €%), otherwise.

3.2. Arakawa’s discretizations

Arakawa [2] constructed finite difference discretizations of (2) that preserve discrete
versions of energy (4), enstrophy (5), or both.

Define matrices D, and D, that implement the standard second order central difference
approximations to the first derivative

qi+1,5 — qi—1,5 Qi j+1 — Qi j—1
(Daq)ij = ——5 = (Dya@)i; = T ony (8)
These matrices are skew-symmetric: DI = —D,, DZ = —D,. Additionally, denote the
element-wise product of two vectors by (u * v); ; = w; ;v; j. The scalar product
’LLT(’U * ’UJ) = Z U, V4,5 Wi, 5 (9)
2]

is fully symmetric with respect to the vectors u, v and w.
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Arakawa’s discretizations can be viewed as discrete approximations to the equivalent
formulations of (2)

T(q:0) = @by — @y,
J(%W = 6w(qu) - 8@/((17%)7
T(q:%) = 0y(qu¥) — 0x(qy¥),

and are given by

Jo(q,¥) = (Dz2q) * (Dyvp) — (Dyq) * (Datp), (10)
JE((L"/’) :Dw(Q*Dy¢) _Dy(Q*Dw¢)7 (11)
JZ(Qv"/)) :Dy(w*qu) _Dz("/’*qu)~ (12)

The Arakawa schemes are interesting for us, because they are all based on the stan-
dard second order central difference operators applied in various ‘conservation forms’
and hence, for short simulations with smooth solutions, there is often little noticeable
difference between different discretizations. One might therefore expect that they yield
similar statistics. On the contrary, the long-term statistics differ greatly.

To understand the conservation properties of these three discretizations, it is useful to
introduce the Nambu bracket formalism [15,16,20]. Define the associated brackets (the
gradients are with respect to q)

{F,G,H}o = —VFT Jy,(VG,VH) (

— —VF"[(D,VG)  (D,VH) - (D,VG) (D, VH)], |

{F,G,H}g = -VF"Jg(VG,VH) (
=-VF'[D,(VG*D,VH) — D, (VG * D,VH)], (16

{F.G,H}y = —VFTJg(VG,VH) (

=-VFTD,(D,VG *VG) - D,(D,VG * VH)], (

for arbitrary differentiable F(q), G(q), H(q) : RM — R.
Then second order consistent discretizations of (1) are obtained in the bracket with
Ey; and Z)y; according to:
¢ij = {qi.j, Zm, Em},
where F)s and Z), are discrete approximations to the energy

1 1 .
Ex(q) = =597 (q = h)away = o > (K + 02| o[ avay (19)
k.
and enstrophy
1 1.
Zu(q) = 5q"qavay = 5 ldne[*avay. (20)
ke

The derivative % of a function F(q) along a solution q(t) to the discrete equations is
given by the Nambu bracket of F' with Z; and Ej;:
dF

— ={FZy, Enr b
dt {F, Zm, B}

This fact can be used to establish the conservation properties of the various discretizations
(see Salmon [20] for generalizations).



Theorem 3.1 (Arakawa [2]) The discrete energy En is a first integral of the semi-
discretization (11). Likewise, the discrete enstrophy Zyy is a first integral of (12).
Proof. First note that the bracket {-,-,-}¢ is antisymmetric in its last two arguments,
due to the commutativity of the x operator:

{F,G,H}o = —{F,H,G}. (21)
Next, using the skew-symmetry of D, and D,, and the symmetry of (9), we observe that
{F,.G,H}p = (D,VF)T(VG * D,VH) — (DyVF)T(VG x*D,VH)={G,H, F},
and similarly,
{F,G,H},; ={H, F,G}.
It follows that the E discretization (11) conserves energy, since

dE
dt

by the antisymmetry property (21). By the same token, the Z discretization (12) con-
serves enstrophy:

={Em,Zm,Evm}e ={Zm, Envt, Ervi}o =0

dg—tM =1{Zn, Zn, Enrtz ={Ewm, Za, Zarto = 0.
([
Furthermore, a fully antisymmetric Jacobian can be derived as an average of (10)—(12)
Toz(a.$) = 5 (@, %) + Ju(a. ) + Jz(a. ) (22)
The associated Nambu bracket
{F.G. HYpz = 3 ({F.G. H)o + (F,G, H}p + (F,G, H} ) (23)

_ % ({F, G, H}o+ {G, H, F}o + {H, F,G}o)

is fully antisymmetric (with respect to transposition of any two elements). For example,
transposing G and H yields

{FvH’G}EZ:é({F7H7G}O+{HvGaF}O+{G7F’H}O)

= % (-{F,G,H}y —{H,F,G}o—{G,H,F}¢) = —{F,G,H}gz.

As a result, this bracket conserves both invariants (19) and (20):
Theorem 3.2 (Arakawa [2]) Both Ey; and Zyp are first integrals for the discretization

In reference to their conservation properties, we will refer to the discretizations (10)-
(12) and (22) as the 0, E, Z and EZ discretizations, respectively.

Remark. The enstrophy conserving discretizations (12) and (22) not only conserve the
global enstrophy Zx, but in fact satisfy discrete local conservation laws for enstrophy (see
Appendix). Local conservation implies global conservation under appropriate boundary
conditions, and so may be useful for other applications. It is uncertain whether local
conservation of enstrophy is more significant for statistics than global conservation, nor
were we able to derive an analogous discrete local conservation law for energy. However,
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we believe the existence of the discrete local conservation law of enstrophy for Arakawa’s
method is unknown in the literature, and so record it in the appendix.

One can check that a solution of the form g = pw, p a scalar, is an exact steady
state for the 0 and FZ discretizations. Such a solution is not, in general, a steady state
solution for the F and Z discretizations. However, the limit cases {¢) = 0,q = h} and
{q=0,v% = —A;}h} obviously are steady states to those discretizations.

3.3. Volume preservation

In addition to conservation, a second important ingredient for statistical mechanics is
the preservation, by the flow map, of the phase space volume element. In this section we
demonstrate that each of the discretizations from Section 3.2 is volume preserving. Let
us define the matrix D(a) = diag(a) to be the diagonal matrix whose diagonal elements
are the components of the vector a (i.e. D(a);; = a;d;;).

Recall that for an ODE

y =fy)
the divergence of the vector field f satisfies

div f = tr(f),

where f’ denotes the Jacobian matrix of f. In particular, for a matrix A, divAf(y) =
tr(Af'). Furthermore, for

y' = f(y) =g(y) * h(y)
it holds that
f'=D(g)h' + D(h)g'.

In the following calculations we make ready use of the commutative and transpose prop-
erties of the trace tr(AB) = tr(BA) = tr(BT AT). We also need the following properties
of our discretization matrices. The difference operators D, and D, are skew-symmetric
and commute DD, — D,D, = 0. The discrete inverse Laplacian matrix Ayl is sym-
metric and represents a central finite difference stencil. In this case, the matrices Dy AL,
and DyA;f have zeros on the diagonal.

Let us write the discretizations (10)—(12) as functions of g only

Jo(q) = (Dq) * (DyAy' q) — (Dyq) * (DA q), (24)
Je(q) = Do(g * DyAL q) — Dy(q * DAY q), (25)
Jz(q) = Dy ((D2q) * Ay q) — D, ((Dyq) * Ay'q) . (26)

Proposition 3.1 The vector fields defined by (24)-(26) and their average Jpz = (Jo +
JE + Jz)/3 are divergence free.
Proof. We calculate, for (24),

div Jo(q) = tr (D(DyA}/'q)D,) + tr (D(Dyq)DyA}})
—tr (D(DyAy'q)Dy) — tr (D(Dyq) D, A ) =0, (27)

since each term is the trace of the product of a diagonal matrix and a matrix with zero
diagonal.



For (25),

div Jg(q) = tr (D, [D(q)DyAy + D(DyAy q)])
—tr (D, [D(q)D. Ay + D(D, AL q)])
= tr(D(q)[DyAy Dr — DAL D)
+tr (D,D(DyA}q) — DyD(D, A} q)) = 0.

The term in brackets in the last expression is identically zero by symmetry considerations.
Similarly, for (26) we have

div Jz(q) = tr (D, [D(A}; ) « + D(D.q)A'])
—tr (D, [D(Ay'q)Dy + D(D.q)Ay'])
= tr (D(Ay'q) [D: Dy — Dy D)
+ tr (D(D,q)A}y; Dy — D(Dyq)Ay/' Dy) = 0.

Finally, discretization EZ is divergence-free because it is a linear combination of
divergence-free vector fields. O

4. Energy-enstrophy statistical theory

The equilibrium statistical mechanical theory for 2D ideal fluids was developed by
Kraichnan [8], and Salmon et al. [21]. It is based on a finite truncation of the spectral
decomposition of the equations of motion. Statistical predictions are obtained for the
truncated system, and these are extended to the infinite dimensional limit.

In this paper we would like to adapt the analysis to the semi-discretizations outlined
in the previous section. For the discretization FZ, which conserves both energy and
enstrophy, the analysis is identical to the spectral case, as presented in Majda & Wang
[11]. Consequently, most of the material in Sections 4.1, 4.2 and 4.3 is simply summarized
from Chapters 7 and 8 of [11]. In Section 4.4 we modify the statistical predictions of the
energy-enstrophy theory to the cases of only one quantity conserved.

As previously noted, semi-discretization of (1) using the bracket (22) yields a system of
M? ordinary differential equations having the Liouville property and two first integrals
that approximate the energy (19) and enstrophy (20). Due to the Liouville property, one
can speak of transport of probability density functions by this semi-discrete flow, and
consider equilibrium solutions to Liouville’s equation. Any normalized function of the
two first integrals is an equilibrium distribution.

4.1. Mean field predictions

The equilibrium distribution of least bias maximizes entropy under the constraints im-
posed by conservation of energy and enstrophy. Let X parameterize the M? dimensional
phase space; that is, each X € RM*M corresponds to a particular realization of the grid
function (or discrete field) g. A probability distribution p : RM*M — R on phase space
satisfies

020 [ px)ax -1
R]WXI\/I
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The least biased distribution maximizes the entropy functional

Sll=- [, p(X)logp(X)dx (28)
RMXxM
under constraints on the ensemble averages of energy:
Kl = [ Ew(X)p(X)dX - Ejf =0, (29)
RMxM
and enstrophy:
Kzlol= [ Zu(X)p(X)dX - 23 =0, (30)
RM xM

where E;; and Z3, are prescribed values. Additionally, there is the implied constraint
that p be a probability distribution, i.e.

Nl = / p(X)dX —1 =0, (31)
RMxM
Using the method of Lagrange multipliers, one seeks

p = argmax {S [p] + AN [p] + MK [p] + XKz o]}

to maximize the functional in braces. subject to the constraints (29)—(31), where the
A;j can be chosen to ensure (29)-(31). For the maximizing distribution, the variational
derivative of the expression enclosed in braces above must vanish. The variational deriva-
tives of (28)—(31) are
% = _(1 + Ing),
0K E
dp

The maximizing distribution must therefore satisfy
This equation can be solved for p* to give the Gibbs-like distribution (i.e. G = p*)
G(X) = C7 exp[~a (Zu(X) + pBu(X))], (32)
where C' is the normalizing constant to ensure (31) and « and p are chosen to ensure
(29) and (30).
The expected value of a function F(X) is the ensemble average of F' with the measure
G, denoted

(F) = /R F(X)G(X)dX.

The mean state is obtained from the observation
YA, OE YAV, OEM\ 1 _ (23 (X)+uEwm (X))
—_— — ) = — — « dX
<aX +“ax> /RMxM<aX trex )Ce

0
_ 1 9 _
o @ Ab{xk{ 8Xg(X) dX 0’



assuming G decays sufficiently fast at infinity. Since VqE) = —tp and V42 = g, the
mean field relation

(@) = n(¥) (33)

follows. In other words, the ensemble averages of potential vorticity and stream function
are linearly related. Using the second relation of (1) one has

A () = (q) — h,

which, coupled with (33), yields a modified Helmholtz problem for the stream function
given

(= Awn) () = h. (34)
4.2. PV fluctuation predictions

Majda & Wang [11] show that states (33) are nonlinearly stable steady states of (1).
They rewrite solutions to (1) as the sum of mean and fluctuation parts
a=(@+qd, Y=+, (@) =u)

This yields the equation for fluctuations
a,=J(a). ") +J(d . (¥) +J(d,¥), Auyp'=4. (35)
This differential equation has the first integral

1 1
§(Q’)TQ’A3:Ay, E§»1=—§(¢’)Tq’mmy- (36)

One can also set up a statistical mechanics for the fluctuation equations and obtain
predictions. To do so, let

In(q') = Zy + pnEy, Zy =

i 1/2
Drp = <1 + m) Qoo (37)

Then the Fourier transform of (36) gives

1 W R 1 R 1
Iy = 3 Z (1 + m) |G o|*azay = 5 Z |Pr.e|*aray = 5 ZpiijAy’ (38)
14 k¢ 0]

with corresponding fluctuation Gibbs distribution

_ B - p
G'(p) = C exp 3 pr,ijAy = HC exp —§P§,JA$AZJ ; (39)
1,] 2,7

M* _ =1 Denote the Gaussian distribution with mean z and standard devia-

g(z;2,0) = ! eXp<—M>,

oV2m 20
for which it holds that [, g(z) do = 1. The distribution (39) is the product of M? identical
such functions, i.e.,

where ¢~
tion o by

G'(p) = [[9(pij;0,00),
%]

where o, = (Bazay) /2.

10



Define the partial energy I; ; = %pijAmAy. We calculate

1
(Lij) = =p; jnxay | [ 9(pr.e; 0,0p) dpe
RJWXZM 2 k: Z

ATAY 2 azay 5 1
- 9 /Rpi,jg(pi,j;(hap)dpm = TUP = %

This holds for each partial energy. The energy is equipartitioned, and
1 M?
< M> ;j<%]> ;J:2B 26’

from which we obtain the estimates

gzﬂ o = | 2H) )
2(Iy)’ P M?2azay 272
Let us also assume that the p; ; are independent. Let P = a”p denote a linear combi-
nation of the p; ;. Since these are identically distributed, P is Gaussian with variation

o(P)? = aTaoi = |a|205.

From (37) we have

~1/2
1. L
qg=F 1d1ag<(1+k2+gz) >.7:p:Ap,

where A is real and symmetric. It follows that the time series g; ;(¢) at each grid point
1,7 is Gaussian with mean zero and variance

2 |a|202 _ ‘a|2<IM> (40)

P 272 )

where for a we can take any row of A.

4.3. Approzimation of p and «

The ensemble averages of energy and enstrophy can be split into a mean part and a
fluctuation part [11]:
(Em) =En((@) + By, (Zm) = Zu((@) + Ziy, (41)

where, using (34),

M/2 2 o7 2
LT 1 (k° + )| o
_ ! _ _Z , 42
Ex((a) = =5 ()" ({q) — h)azay QH_%M (T By ATAY (42)
1 & 1
Bu=5 X  Tiwe (42b)
20 b= 31241 w+k?+L
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and

Zn((@) = ~(@)T(q)azay = %2 il (43a)
m\\q —2q q y_2kZ:—M/2+1(M+k2+€2)2 Y,
M/2
1 k% 4 02
Tu=5 DY TimE (43D)
20 k,é:_M/2+1'u+k +e

Given guesses for p and «, it is straightforward to compute (Ey;) and (Z)) by solving
(42) and (43) and then substituting into (41). To estimate p and o, we proceed iteratively
to implicitly solve (29) and (30) under that assumptions E%, ~ & and Z3; = Z;.

4.4. Alternative statistical theories

In this section we derive alternative statistical models for the cases where either energy
or enstrophy, but not both, is conserved numerically.

4.4.1. Energy-based statistical mechanics
For a semi-discretization that only preserves the energy E);, the least biased distribu-
tion (32) becomes
Ge(X)=Clexp{-AEn(X)}.

The mean field prediction (33) gives
()=0,  (q)
The fluctuation dynamics (35) becomes
a,=Jeh+4q.¥), P =47,
which preserves the pseudo-energy

1
Iy = —§(¢/)T¢I’A$Ay =Ey ~&

h. (44)

We define
R .0
Pk, = (k2 +€2)1/27

and obtain the fluctuation Gibbs distribution (39) with o, = ({(I5s)/272)'/2. The fluctu-
ation vorticity o, is given by (40) with A = (—A,,)/2.

4.4.2. Enstrophy-based statistical mechanics
For a semi-discretization that only preserves the enstrophy Z,;, the least biased dis-
tribution (32) becomes
Ge(X)=Clexp{-\Zy(X)}.
The mean field prediction (33) gives
(@) =0, (¥)=-Ay'h. (45)

The fluctuation dynamics (35) becomes
q=Jz(d. () +9), ¥ =A444d,
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and the pseudo-energy is just the enstrophy, i.e.

1
Iy = i(q’)Tq’AxAy =7\ = Z.

We obtain the fluctuation Gibbs distribution (39) with px¢ = §; , and find

(Im)
Oq = W

5. Time integration

To test the statistical predictions of the previous section with computations, the semi-
discretizations of Section 3 must be supplemented with a time stepping scheme. One
would prefer to have a scheme that conserves the invariants E; and Z); in time whenever
these are first integrals of the spatial discretization. Additionally, one would like to have
a scheme that preserves volume. There is much literature on the preservation of first
integrals under discretization; see [6] for an overview. Much less is known about preserving
volume.

5.1. Time discretizations

Since both invariants Fj; and Zj; of the discretizations are quadratic functions of g,
they are automatically conserved if the equations are integrated with a Gauss-Legendre
Runge-Kutta method [6]. The simplest such method is the implicit midpoint rule

qn—i-l _ qn g <qn+1 +qn ,l/)nJrl +¢n>

At 2 2

The discretization is also symmetric, and in the case of zero topography h(x) = 0,
preserves the time reversal symmetry ¢ — —t, ¢ — —q of (1). Although it is symplectic for
Hamiltonian systems with constant structure operators, the midpoint rule is not volume
preserving in general. Indeed, it does not preserve volume exactly for our discretizations.
However, numerical experiments indicate that volume is approximately conserved on long
intervals, even for a relatively large step size.

The implicit midpoint rule requires the solution of a nonlinear system of dimension
M? at every time step. As a more efficient alternative, we can take any explicit Runge-
Kutta method and project the solution onto the integral manifolds as desired. Let the
Runge-Kutta method be represented by a map ¢"*! = ®5(g") and compute a predicted
step

q° = 2ai(q"”).

Then project g* onto the desired constraint manifolds by solving
qn+1 _ q* +gl(q*)TA
9(¢""") =0

for A, where g(q) : RM*M — R"  r the number of first integrals, and A € R" is a vector
of Lagrange multipliers. For example, we can take (r = 3)
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En(q) — &

g(q) = | Zm(@) = 2o
(Z gij) =1

where the last constraint ensures that there is no drift in total vorticity. At each time
step, projection requires solving a small nonlinear problem of dimension r. Projected
Runge-Kutta methods will not preserve volume in general.

3

5.2. Time averages

Our interest is in the statistics applied to numerical data obtained from simulations
over long times. To apply the theory from the previous sections, we additionally have
to assume that the semi-discrete dynamics are ergodic. Denote the time average of a
quantity F(gq(t)) by

_ 1 to+T
Fr = T/ F(q(t)) dt.
to

Then the assumption of ergodicity implies that the long time average converges to the
ensemble average
T—o0

On the other hand, suppose one chooses discrete initial conditions to have a prescribed
energy and enstrophy consistent with the continuum problem, i.e.

En(q(0) =&,  Zu(q(0)) = Zo.

Then it is clear that since Fp(q(t)) = En(q(0)) and Zp(q(t)) = Zp(q(0)) are con-
served, the dynamics only samples at most a codimension two subspace of RM*M 5o
one may ask to what extent the averages will converge. Indeed, one has inequality

Ey = (Eum) # &o, Zyv = {Zum) # 2o,

in general. By analogy with molecular dynamics, the Gibbs distribution (32) determines
expectations in the canonical ensemble, whereas a constant energy-enstrophy simulation
determines expectations in the microcanonical ensemble (assuming ergodicity). It is only
in the ‘thermodynamic limit’ M — oo that these averages coincide, giving equality in
the above relations.

6. Numerical experiments
For the numerical experiments we use the test problem of [1]. The grid resolution is
M = 22. The orography is a function of x only, specifically
h(z,y) = 0.2cosx + 0.4 cos 2x.

(As a result the predicted mean fields @ and % should be functions of x only.) The
integrations were carried out using a step size of At = 0.1.
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For initial conditions we take a uniformly random field! q = ¢, 4j=1,...M and
project this onto the constraints

En(q) =&, Zu(@)=20, Y a;=0
i

The same initial condition is used for all simulations. The discrete energy and enstrophy
were taken to be & = 7 and Z, = 20.

With these values prescribed, the statistical predictions of Section 4 can be computed
for the three discretizations (11), (12), and (22). The Lagrange multiplier u is computed
using the procedure described at the end of Section 4.3. Fluctuation statistics apply to
the time series of PV at an arbitrarily chosen monitor point on the grid gmon = ¢3,12-

For the energy-enstrophy theory we obtain the mean state (33) and estimates

EZ: p=-0.730, (Gmon) = —0.341, oq = 0.970. (46)
For the energy theory of Section 4.4.1 we obtain the mean state (44) and estimates
E: (¢)=0, (@mon) = 0.0740, 04 = 5.36. (47)
For the enstrophy theory of Section 4.4.2 we obtain the mean state (45) and estimates
Z: u=0, (Gmon) = 0, o4 = 1.01. (48)

The discretization (10), which conserves neither energy nor enstrophy, was found to
be exponentially unstable under time discretization by the implicit midpoint rule, and
no experiments with that discretization will be reported here.

6.1. Results using implicit midpoint

We first present results obtained using the implicit midpoint discretization in time. The
nonlinear relations were solved using fixed point iteration to a tolerance of 1073, which
was the smallest tolerance that gave convergence at each step size for all discretizations.
The solutions were averaged over the interval 10° < ¢t < T, for T = 10%, 10° and 106.
Averages were computed from time ¢ = 1000 to allow the initially uniformly random
initial condition to de-correlate, and this time is consistent with that used in [1] for a
spectral discretization.

Given the average fields g and 1), the best linear fit to (33) yields an estimate of the
Lagrange multiplier p, i.e.

=T
===
P

The relative change in energy and enstrophy for each discretization is plotted in Figure
1 on the interval [0, 10%]. The relative change is defined as
Ey —&o VAT )

& Zy

For the EZ discretization, both quantities are conserved up to the tolerance of the fixed
point iteration, which leads to a small drift of magnitude 3 x 107! (relative) over this
interval. For the F discretization, energy is conserved to the tolerance of the fixed point

T

< |l

AET, = AZY =

1 Experiments with smooth initial conditions typically show no noticable difference, however.
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iteration, but enstrophy makes a rapid jump to a mean state roughly 30 times its initial
value and subsequently undergoes bounded fluctuations with amplitude about 10 x Zj.
In contrast, for the Z discretization, enstrophy is similarly conserved, but energy drifts
gradually with a negative trend, to about 25% of its initial value.

x 10 “Rel. error Rel. error Rel. error
40 0.5
—E
—z 2 e
2 0
20 —E —E
—Z —Z
1
0 0 -0.5
0
-2 -10 -1
0 5 10 0 5 10 0 5 10
t o xa0 v xao vt xao

Figure 1. Relative change in energy and enstrophy with EZ (left), E' (middle) and Z (right) discretiza-
tions.

6.1.1. Long-time mean fields

The time-averaged stream function 1) obtained by averaging over the interval [103,10%]
is shown in Figure 2 for the three £Z, E and Z discretizations. Also shown is a scatter plot
of the locus (@’j, gi,;) and a linear best fit to this data for the respective discretizations.

For the EZ discretization, the mean stream function is similar to that predicted by
the energy-enstrophy statistical theory (33), with 1 = —0.734. For the E discretization,
the mean stream function satisfies ¥ ~ 0, consistent with (44), and the linear regression
is inaccurate. For the Z discretization, we observe a similar mean state with i = —0.715
on this averaging interval, which is inconsistent with prediction (48).

EZ-disc, p =-0.734 E-disc, p = 2.38 Z-disc, p =-0.715

1
0
1H
I 0
-1
-1 0 1
g

Figure 2. Mean fields with averaging time 104, EZ (left), E (middle), and Z (right). The insets show
the best linear fit to the relation v; ; = nug;, ; at all grid points.
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In Figures 3 and 4 we examine more closely the mean fields for the £Z and Z dis-
cretizations, for longer averaging times of 7' = 10° and T' = 10. For the energy-enstrophy
discretization (22) in Figure 3, the mean field appears to converge to an equilibrium state
with it &~ —0.732. The tendency in Figure 4 is toward a mean field with zero vorticity,
consistent with (45). However the relaxation time is much longer than for the other dis-
cretizations. For T' = 10°, the mean flow has i = —0.0529. Note that the relation g = pap
approximates the data well for all averaging times, however. In Section 6.1.3 below, we
show that the convergence of the Z discretization is in agreement with the E'Z predic-
tions on short time intervals, so that we can think of the system staying near statistical
equilibrium with slowly drifting energy.

T =10% p=-0.734 T =10% pu=-0.73 T =10°% p=-0.731

0 1
v
Figure 3. Mean fields for EZ discretization with averaging times 10* (left), 10 (middle), and 10® (right).
The insets show the best linear fit to the relation v; ; = ug; ; at all grid points.

T =104, p=-0.715 T = 105, = -0.322 T = 10°, ju = -0.0529

1

0
U

Figure 4. Mean fields for discretization Jz with averaging times 10% (left), 10° (middle), and 108 (right).
The insets show the best linear fit to the relation v; ; = ug; ; at all grid points.

6.1.2. PV fluctuation statistics

In Figure 5, the time series for potential vorticity gmon at an arbitrarily chosen grid
point (3, 12) is analyzed. As discussed in Section 4.2, the statistical theory for fluctuations
predicts that the PV should be distributed normally about the mean field according to
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(46)—(48). For the longest simulation time of T = 10°, the EZ discretization exhibits

Gaussian fluctuations with mean o, = —0.395 and standard deviation ¢ = 0.927; the
FE discretization with mean o, = —0.0093 and standard deviation ¢ = 5.35; and the
7 discretization with mean G¢non, = —0.0575 and standard deviation ¢ = 1.05. These

observations are approximately in agreement with (46)—(48).

We mention that the value g = 0.732, to which the EZ discretization seems to relax,
corresponds to a mean energy value of (Ey) = 7.07. For this value of mean energy, the
prediction of Section 4.2 gives o = 0.928, which is much closer to the value observed
in Figure 5. This indicates that for implicit midpoint, the mean energy is somewhat
preturbed from the microcanonical energy &.

Gmon = -0.184, o = 0.903 Gmon = 0.0624, & = 5.3 Gmon = -0.38, & = 0.966
0.4 0.4 0.4
0.2 0.2 0.2
/\
0 0 0
-10 0 10 -10 0 10 -10 0 10
Gmon = -0.38, & = 0.923 Gmon = 0.0342, ¢ = 5.36 Gmon = -0.127, o0 = 1.04

0.4 0.4 0.4
0.2 0.2 0.2
/_\
0 0 0
-10 0 10 -10 0 10 -10 0 10
Gmon = -0.395, ¢ = 0.927  Gmon = 0.00931, 0 = 5.35  Gmon = -0.0575, o = 1.05
0.6 0.6 0.6
0.4 0.4 0.4
0.2 0.2 0.2
/\
0 0 0
-10 0 10 -10 0 10 -10 0 10
Qmon Qmon Qmon

Figure 5. Fluctuation statistics for the potential vorticity about the predicted mean. The histogram is
observation. The red line is a Gaussian fit. The black line is the predicted distribution. Discretizations
EZ, E, and Z in left, middle and right columns. Integration intervals of 104, 10% and 10° in top, middle
and bottom rows.

6.1.3. Time-dependent energy-enstrophy model
In Figure 6, the convergence of fi is plotted as a function of averaging interval T
for both the Z and EZ discretizations. The EZ dynamics relaxes very rapidly to give
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i~ —0.73, whereas the Z dynamics converges rather slowly towards i = 0. Given the
relatively fast relaxation of the energy-enstrophy conserving discretization to statistical
equilibrium (33) and the slow drift of energy in Figure 1 for the enstrophy conserving
discretization (12), a natural model for the approach to equilibrium would be to consider
a state gr = firyr with fip corresponding to the instantaneous energy Eps(T).

To test this idea, we define

1 Xz 1 &
¢T=N—Tn§::11/), qT_N—TnZ:lq,
where T' = Np - At, and B
" (El’T)T‘_lT
(br)Tr

The energy of the associated equilibrium state is denoted E/(fir) and is determined from
the relations in Section 4.3. This energy is plotted in Figure 7 next to the actual discrete
energy function, for increasing averaging intervals 7' = 10, T' = 100 and 7" = 1000. The
agreement supports this model. That is, the Z dynamics relaxes on a fast time scale to the
statistical equilibrium predicted by energy-enstrophy theory for the instantaneous energy,
while the energy drifts on a slow time scale towards the equilibrium state predicted by
the enstrophy theory.

-0.728 0

-0.73

< -0.732

-0.412

-0.734 -0.6

—0.7360 L L L L I I I -0.8

I
5
T

Figure 6. Convergence of parameter pup as a function of the averaging interval T' for the EZ and Z
discretizations.

6.2. Results using projected Heun’s method

Besides preserving quadratic first integrals exactly, the implicit midpoint rule is sym-
metric. It is unclear what effect, if any, this may have on statistics. Furthermore, the
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Figure 7. Energy drift with Z discretization, compared to the energy associated with the best linear fit
pr with averaging intervals T'= 10, T' = 100 and 7' = 1000.

implicit midpoint rule is fully implicit and therefore not a very practical choice for inte-
grating a nonstiff system such as (1). For these reasons we repeat the experiments of the
previous section using the second order, explicit Runge-Kutta method due to Heun [7],
coupled with projection onto the discrete energy and/or enstrophy manifolds. It should
be noted that Heun’s method is linearly unstable with respect to a center equilibrium,
and it is only due to projection that we can carry out long integrations with this method.

Figure 8 compares the convergence of the parameter fir as a function of T for the
implicit midpoint and projected Heun integrators for the £Z and Z discretizations. In
both cases, it appears that the projected method approaches equilibrium faster than
implicit midpoint.

Figures 9, 10 and 11 are analogous to Figures 2, 3 and 4 for implicit midpoint. Again
we note that the projected method converges more rapidly and more accurately to the
mean states (46)—(48).

The fluctuation statistics for the projection method are illustrated in Figure 12. Here,
too, we see that the projection method is very close to the statistically predicted value for
mean and standard deviation of PV fluctuations in (46)—(48). However, it is important to
note that since a measure of predictability is the deviation from the statistical equilibrium,
a numerical method that approaches equilibrium excessively fast is undesirable from a
prediction perspective.
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EZ-disc Z-disc

-0.725 0.2
-0.73
< -0.735
-0.74
—— Impl. midpoint ' —— Impl. midpoint
— Projection — Projection
-0.745 -0.8
0 1 2 3 4 0 5 10
T x 10° T x 10°

Figure 8. Convergence of ur as a function of averaging interval T for EZ (left) and Z (right) discretiza-
tions, comparing the projected Heun’s method and implicit midpoint.

EZ-disc, pn =-0.731 E-disc, up =-31.5 Z-disc, p = -0.355

1

04 _
0o 1 -1 0 1
v v

Figure 9. Same as Figure 2, but using projected Heun’s method

T =104, p = -0.731 T =105, = -0.731 T =105, = -0.73

Figure 10. Same as Figure 3, but using projected Heun’s method.
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T =104, p = -0.355

\-.“.\A
0 1
v

T =10°, = -0.0799

T =108, = 0.0423

Figure 11. Same as Figure 4, but using projected Heun’s method.
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Figure 12. Same as Figure 5, but using projected Heun’s method.

22



6.3. Discrete volume preservation

Although the spatial discretizations were shown to be volume preserving, neither the
implicit midpoint rule nor the projected Heun integrator preserves volume for the dis-
crete map. To get an impression of the degree of volume contraction, we computed the
determinant of the Jacobian of the discrete flow maps, e.g.

n+1
c" = det <dq >
dqn

in each time step. The cummulative volume ratio was defined to be

n
Vn = H "
m=0

This volume ratio is plotted as a function of time in Figure 13 for the implicit midpoint
and projected Heun methods. In both cases, a grid of size M = 12 was and step size
at = 0.1 were used. The EZ-discretization (22) was employed, with in the second case,
projection onto the energy and enstrophy manifolds.

Remarkably, the implicit midpoint rule conserves volume to within 3 x 1073 over the
entire interval, exhibiting only a small positive drift.

For the projected method, volume is greatly contracted—to Vy = 10~% at time t = 10
(100 time steps).

Implicit midpoint Projected Heun
1.003 1
1.0025
0.8
1.002
1.0015 0.6
S 1.001
1.0005 04
1
0.2
0.9995
0.999 0
0 200 400 600 800 1000 0 2 4 6 8 10

t t
Figure 13. Volume contraction ratio for implicit midpoint (left) and projected Heun (right) methods,

EZ-discretization (22), M = 12, 10* time steps.

7. Conclusions

In this paper we have constructed statistical mechanical theories for three conservative
discretizations of the quasi-geostrophic model due to Arakawa [2], based on conservation
of energy, enstrophy, or both. Numerical experiments indicate that the statistical theories

23



can give insight into the long time behavior of the discretizations, making this approach
a useful tool for numerical analysis.

Time integration of the semi-discretization was done with the symmetric implicit mid-
point method—which automatically conserves any quadratic first integrals of the semi-
discrete system—and with a projected Runge-Kutta method. Long time averages with
the implicit midpoint discretization relax to the predicted equilibrium at a slower rate
than for the projected method, suggesting that implicit midpoint has higher potential for
prediction. The implicit midpoint rule was also found to approximately conserve volume
for long time intervals. This is in stark contrast to the projection method, for which
phase space volume is rapidly contracted.

The three statistical theories predict dramatically different behavior, and this is con-
firmed by the numerical experiments. In other words, the three discretizations exhibit
dramatically different behavior in simulations over long intervals. The statistical equilib-
rium states define a backdrop on which the discrete dynamics occurs, and that backdrop
depends on the conservation properties of the spatial discretization. Assuming the energy-
enstrophy theory to be correct, it is thus essential for any code to preserve both quantities
(under semi-discretization) if statistical consistency is desired.

On the other hand, it has been shown by Abramov & Majda [1] that the energy-
enstrophy theory is incomplete. In [1], the Poisson discretization of [25] is integrated
using the Poisson splitting of McLachlan [13]. The semi-discretization preserves, in addi-
tion to the Hamiltonian, N Casimirs corresponding to the first N moments of potential
vorticity (PV), and these are preserved by the splitting (the energy is only preserved
approximately, in the sense of backward error analysis [6]). Abramov & Majda give con-
vincing evidence that nonzero values of the third moment of PV, when conserved by the
discretization, can significantly skew the predictions of the standard theory of [8,21,11].

Nonetheless, the results of this paper make a strong argument for the use of conserva-
tive discretizations in weather and climate simulations.

Planned further work on the subjects of this paper will address shallow water equa-
tions on the sphere, energy and enstrophy conserving discretizations [22,19,20], and the
Hamiltonian Particle-Mesh method [3,4,5], a symplectic discretization of inviscid fluids.
In [4] it is shown that the HPM method satisfies a circulation theorem, but it is uncertain
to what extent this can be interpreted as enstrophy conservation. We expect the current
approach will clarify this issue.

Appendix A. Discrete local enstrophy conservation law

For the continuous QG model (1) the enstrophy conservation law is obtained by mul-
tiplying both sides by ¢ and manipulating to get

O (%tf) = —0,(qqy¥) + 9y (qqz1))-

Of course, this conservation law is not really local, in the sense that ¢ depends globally
on ¢ through (1b). However, we will continue to use this terminology in this appendix
to distinguish between a conservation law in flux form that holds locally at a point in
spacetime and a global conservation law involving integration over space such as ‘fl—f =0.
Here we show that the enstrophy conserving discretization (12) satisfies an analogous

semi-discrete local conservation law. Define discrete operators ¢, and d, which act on
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indices as follows:
Tit1,j — Ti1,j

5z7”i,j = T 5. 5y""i,j =

Tig+1 —Tij—1 (A 1)
2Ax ' ’

2ay

Then for the Z discretization we have
Proposition A.1 The discretization (12) satisfies the semi-discrete local enstrophy con-
servation law

1 1
z Z z z z
atei,j = T Ax ( i+1/2,5 — fi—l/z,j) + A_y (9¢,j+1/2 - gi,j—1/2) ) (A.2)
with enstrophy density and fluzes defined by
1
el = 5‘17:2,1’
1
Zjey = 5 (Gi-13%3,30y 85 + i, ¥i-1.30ydi-15)
1
9251 = B (9i,j—1%3,50245,5 + Qi3 j—1024i,5-1) -
Proof. Define auxiliary quantities
Uij = Yij0slij,  Vij = VijOydijs
where 6, and §, are defined in (A.1). The Z discretization (12) is written
Gij = Oyij — OzVij- (A.3)

Multiplying both sides by ¢; ; and adding and subtracting (8,¢; ;)ui,; = (024i,;)vi,; gives

Gijij = i jOytig — 4ij0avig + (0yQi )iy — (0aij)vi;. (A4)

Defining the enstrophy density and fluxes as in the statement of the proposition, equation

(A.4) may be arranged to give (A.2). O
Similarly, for the EZ discretization we have

Proposition A.2 The discretization (22) satisfies the semi-discrete local enstrophy con-
servation law

Oe? = _Ai$ ( 2~ 7:1521/2,;') + Aiy (gfﬁ—l/Q - gsz_l/z) (A.5)
where
£ = 2,
8 0= é [Gi—1,j%i j0y i + Qi jio1,50yGi—1,5 — Qi.jQi—1,5 (Oytij + Oythio1 )],

1
957 e = 5 (Gi,j—1%i,02Gi,; + Gi,j%i,j—102Gi,5—1 — Gi,jGi,j—1 (02905 + 0z j—1)] -

Proof. Write the 0 discretization (10) as
Gij = (282) 7 (Qir1,30y i — G150y %i,5) — (289) 7 (a5,+10:%5,5 — 4ij—10ai5) (A.6)

and the F discretization as

Gij = (282) 7 (Gig1,50yVit1,5 — Qio1,j0ythi—1,5)
—(289) "M (qij+ 10241 — Gij—1020ij—1) . (AT)
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Summing (A.6) and (A.7) and multiplying by ¢; ; gives

2¢i.5Gi; = (282) " Giv1,3i5 (Oyivrj + 0ythig) — qijqio1.5 (Bythij + 0ytbio1 5)]
— (2ay) Mg j+1i5 (0atijr1 + 62tij) — @i j—1 (62tij + 0utbi j—1)],

which is in discrete conservation law form

1 1
E0 _ E0 EO0 EO0 EO
20" = X ( it1/2,5 — fi—1/2,j) + Y (gi,j+1/2 - gi,j—1/2)

where
B = 32,
e = *%qv:,jqi—u (Oythij + Oythiz15)
95 1= _%Qi,jqajfl (62%ij + 0uij—1) -

Now, since (A.2) is derived in precisely the same manner—that is, by multiplying (A.3)
by ¢;,; and rearranging—it follows that the average of (A.6), (A.7) and (12) also satisfies

the discrete local conservation law for enstrophy (A.5), i.e. fib:Zl/Zj = % i§_1/2+§f50_1/2
EZ  _ 1.7 1 FE0

and g;°% j3 ; = 3955172 T 59i5-1/2- 0
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